Resources

Research topics,
Latest news and updates

PUBLICATIONS

Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway

Apigenin is a natural flavonoid compound present in chamomile (Matricaia chamomilla L.) from the Asteraceae family, which is used in the treatment of cardiovascular diseases by tradi-tional healers, but its effects on differentiation and extracellular matrix (ECM) production of cardiac fibroblasts (CFs) induced by transforming growth factor beta 1 (TGF-β1) are poorly understood. This study aimed to examine these effects and potential molecular mechanisms and to provide a new application of apigenin in the prevention and treatment of cardiac fibrosis. The TGF-β1-stimulated CFs or the combination of TGF-β1-stimulated and microRNA-155- 5p (miR-155-5p) inhibitor- or mimic-transfected CFs were treated with or without apigenin. The expression levels of intracellular related mRNA and proteins were detected by real-time polymerase chain reaction and Western blot methods, respectively. The luciferase reporter gene containing cellular Sloan-Kettering Institute (c- Ski) wild or mutant type 3′-UTR was used and the luciferase activity was examined to verify the direct link of miR-155-5p and c-Ski. After treatment of TGF-β1-stimulated CFs with 6–24 μM apigenin, the expression of c-Ski was increased, while levels of miR-155-5p, α-smooth muscle actin, collagen I/III, Smad2/3, and p-Smad2/3 were decreased. After transfection of CFs with the miR-155-5p inhibitor or mimic, the similar or inverse results were respectively observed as well. The combination of TGF-β1 and miR-155-5p inhibitor or mimic might cause an antagonistical or synergistic effect, respectively, and apigenin addition could enhance the effects of the inhibitor and antagonize the effects of the mimic. Luciferase reporter gene assay demonstrated that c-Ski was a direct target of miR-155- 5p. These findings suggested that apigenin could inhibit the differentiation and ECM production in TGF- β1-stimulated CFs, and its mechanisms might partly be attributable to the reduction of miR-155-5p expression and subsequent increment of c-Ski expression, which might result in the inhibition of Smad2/3 and p-Smad2/3 expressions.

Learn more

PUBLICATIONS

NHD2-15, a novel antagonist of Growth Factor Receptor-Bound Protein-2 (GRB2), inhibits leukemic proliferation

The majority of chronic myeloid leukemia (CML) cases are caused by a chromosomal translocation linking the breakpoint cluster region (BCR) gene to the Abelson murine leukemia viral oncogene-1 (ABL1), creating the mutant fusion protein BCR-ABL1. Downstream of BCR-ABL1 is growth factor receptor-bound protein-2 (GRB2), an intracellular adapter protein that binds to BCR-ABL1 via its src-homology-2 (SH2) domain. This binding constitutively activates growth pathways, downregulates apoptosis, and leads to an over proliferation of immature and dysfunctional myeloid cells. Utilizing novel synthetic methods, we developed four furo-quinoxaline compounds as GRB2 SH2 domain antagonists with the goal of disrupting this leukemogenic signaling. One of the four antagonists, NHD2-15, showed a significant reduction in proliferation of K562 cells, a human BCR-ABL1+ leukemic cell line. To elucidate the mode of action of these compounds, various biophysical, in vitro, and in vivo assays were performed. Surface plasmon resonance (SPR) assays indicated that NHD2-15 antagonized GRB2, binding with a KD value of 119 ± 2 μM. Cellulose nitrate (CN) assays indicated that the compound selectively bound the SH2 domain of GRB2. Western blot assays suggested the antagonist downregulated proteins involved in leukemic transformation. Finally, NHD2-15 was nontoxic to primary cells and adult zebrafish, indicating that it may be an effective clinical treatment for CML.

Learn more

PUBLICATIONS

Tracking single cells motility on different substrates

Motility is a key property of a cell, required for several physiological processes, including embryonic development, axon guidance, tissue regeneration, gastrulation, immune response, and cancer metastasis. Therefore, the ability to examine cell motility, especially at a single cell level, is important for understanding various biological processes. Several different assays are currently available to examine cell motility. However, studying cell motility at a single cell level can be costly and/or challenging. Here, we describe a method of tracking random cell motility on different substrates such as glass, tissue-culture polystyrene, and type I collagen hydrogels, which can be modified to generate different collagen network microstructures. In this study we tracked MDA-MB-231 breast cancer cells using The CytoSMARTTM System (Lonza Group, Basel, Switzerland) for live cell imaging and assessed the average cell migration speed using ImageJ and wrMTrck plugin. Our cost-effective and easy-to-use method allows studying cell motility at a single cell level on different substrates with varying degrees of stiffness and varied compositions. This procedure can be successfully performed in a highly accessible manner with a simple setup.

Learn more

PUBLICATIONS

Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(ii) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity

The reactions of CuCl2·2H2O with chromone thiosemicarbazone ligands containing a –H or –CH3 substituent on terminal N yielded monometallic Cu(II) complexes [Cu(HL1)Cl2] (1) and [Cu(HL2)Cl2] (2), whereas bimetallic Cu(II) complexes [Cu(μ-Cl)(HL3)]2Cl2 (3), [Cu(μ-Cl)(HL4)]2Cl2 (4) and [Cu(μ-Cl)(L5)]2 (5) were obtained when a –C2H5, –C6H11 or –C6H5 substituent was present, respectively, in the ligands. The complexes were characterized using elemental analyses, UV-Vis, FT-IR, EPR, mass and TGA studies. The structures of neutral monometallic and dicationic bimetallic complexes were confirmed by single crystal X-ray diffraction, and they exhibited a distorted square pyramidal geometry around Cu(II) ions. The catecholase-mimicking activity of complexes 1–5 was examined spectrophotometrically, and the results revealed that all the complexes except 5 had the ability to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) under aerobic conditions with moderate turnover numbers. In order to find the possible complex–substrate intermediates, a mass spectrometry study was carried out for complexes 1–4 in the presence of 3,5-DTBC. The phosphatase-like activity of 1–5 was also investigated using 4-nitrophenylphosphate (4-NPP) as a model substrate. All the complexes exhibited excellent phosphatase activity in DMF-H2O medium. The complexes displayed significant biomolecular interactions and antioxidant potential. Complex 3 showed good interaction with apoptotic CASP3 protein, VEGFR2 and PIM-1 kinase receptors as revealed by a molecular docking study. Complexes (3–5) exhibited promising cytotoxicity against HeLa-cervical cancer cells with IC50 values of 2.24 (3), 2.25 (4) and 3.77 (5) μM, respectively, and showed a two-fold higher activity than cisplatin. The active complex 3 showed complete inhibition of colony formation at 10 μM concentration. In addition, the acridine orange (AO)/ethidium bromide (EB) staining and real-time live cell imaging results confirmed that complex 3 induced cell death in HeLa cells.

Learn more

PUBLICATIONS

Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming

Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1AWT and ARID1AKO human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-β tumor suppressive function and that inactivation of ARID1A/TGF-β axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality.

Learn more

PUBLICATIONS

Culturing Cells in 2D and 3D

In this chapter, we go over the main principles and protocols that enable to keep cells and tissues alive in an in vitro environment. This process is called “cell culturing” and can be used for both isolated cells and small tissue constructs. After touching upon main terms such as primary, secondary, continuous, and finite cell lines, we focus on describing the main components of cell culture media, including salts, nutrients, and growth factors. We then discuss concepts of sterility, pH, osmolarity, temperature, and gas composition – all of which are needed to be controlled to culture the cells successfully. We also describe how to preserve cell using cryogenic storage and how to properly defrost the cryopreserved cells with minimal loss of viability. We end this chapter by discussing how cell growth in a 3D environment differs from 2D and the means to create 3D cell cultures, including cell aggregation to form 3D spheroids, seeding cells onto 3D meshes, embedding cells into hydrogels, or 3D bioprinting.

Learn more

PUBLICATIONS

Simultaneous culturing of cell monolayers and spheroids on a single microfluidic device for bridging the gap between 2D and 3D cell assays in drug research

Two-dimensional (2D) cell cultures have been the primary screening tools to predict drug impacts in vitro for decades. However, owing to the lack of tissuespecific architecture of 2D cultures, secondary screening using three-dimensional (3D) cell culture models is often necessary. A microfluidic approach that facilitates side-by-side 2D and 3D cell culturing in a single microchannel and thus combines the benefits of both set-ups in drug screening; that is, the uniform spatiotemporal distributions of oxygen, nutrients, and metabolic wastes in 2D, and the tissuelike architecture, cell–cell, and cell–extracellular matrix interactions only achieved in 3D. The microfluidic platform is made from an organically modified ceramic material, which is inherently biocompatible and supports cell adhesion (2D culture) and metal adhesion (for integration of impedance electrodes to monitor cell proliferation). To induce 3D spheroid formation on another area, a single-step lithography process is used to fabricate concave microwells, which are made cellrepellant by nanofunctionalization (i.e., plasma porosification and hydrophobic coating). Thanks to the concave shape of the microwells, the spheroids produced on-chip can also be released, with the help of microfluidic flow, for further off-chip characterization after culturing. In this study, the methodology is evaluated for drug cytotoxicity assessment on human hepatocytes.

Learn more

PUBLICATIONS

Morphology, motility and cytoskeletal architecture of breast cancer cells depend on Keratin 19 and Substrate

Cancer cells gain motility through events that accompany modulation of cell shape and include altered expression of keratins. However, the role of keratins in change of cancer cell architecture is not well understood. Therefore, we ablated the expression of keratin 19 (K19) in breast cancer cells of the MDA-MB-231 cell line and found that cells lacking K19 become more elongated in culture, with morphological reversion toward the parental phenotype upon transduction of KRT19. Also, the number of actin stress fibers and focal adhesions were significantly reduced in KRT19 knockout (KO) cells. The altered morphology of KRT19 KO cells was then characterized quantitatively using digital holographic microscopy (DHM), which not only confirmed the phenotypic change of KRT19 KO cells but also identified that the K19-dependent morphological change is dependent on the substrate type. A new quantitative method of single cell analysis from DHM, via average phase difference maps, facilitated evaluation of K19-substrate interactive effects on cell morphology. When plated on collagen substrate, KRT19 KO cells were less elongated and resembled parental cells. Assessing single cell motility further showed that while KRT19 KO cells moved faster than parental cells on a rigid surface, this increase in motility became abrogated when cells were plated on collagen. Overall, our study suggests that K19 inhibits cell motility by regulating cell shape in a substrate-dependent manner. Thus, this study provides a potential basis for the altered expression of keratins associated with change in cell shape and motility of cancer cells.

Learn more

PUBLICATIONS

MAL2-induced actin-based protrusion formation is anti-oncogenic in hepatocellular carcinoma

Recent studies report that the polarity gene myelin and lymphocyte protein 2 (MAL2), is overexpressed in multiple human carcinomas largely at the transcript level. Because chromosome 8q24 amplification (where MAL2 resides) is associated with hepatocellular- and cholangio-carcinomas, we examined MAL2 protein expression in these human carcinoma lesions and adjacent benign tissue using immunohistochemistry. For comparison, we analyzed renal cell carcinomas that are not associated with chromosome 8q24 amplification. Surprisingly, we found that MAL2 protein levels were decreased in the malignant tissues compared to benign in all three carcinomas, suggesting MAL2 expression may be anti-oncogenic. Consistent with this conclusion, we determined that endogenously overexpressed MAL2 in HCC-derived Hep3B cells or exogenously expressed MAL2 in hepatoma-derived Clone 9 cells (that lack endogenous MAL2) promoted actin-based protrusion formation with a reciprocal decrease in invadopodia. MAL2 overexpression also led to decreased cell migration, invasion and proliferation (to a more modest extent) while loss of MAL2 expression reversed the phenotypes. Mutational analysis revealed that a putative Ena/VASP homology 1 recognition site confers the MAL2-phenotype suggesting its role in tumor suppression involves actin remodeling. To reconcile decreased MAL2 protein expression in human carcinomas and its anti-oncogenic phenotypes with increased transcript levels, we propose a transcriptional regulatory model for MAL2 transient overexpression.

Learn more

PUBLICATIONS

The indirect antiangiogenic effect of IL‐37 in the tumor microenvironment

IL-37, a newly identified IL-1 family cytokine, has been shown to play an important role in inflammatory diseases, autoimmune diseases, and carcinogenesis. IL-37 has been suggested to suppress tumoral angiogenesis, whereas some publications showed that IL-37 promoted angiogenesis through TGF-β signaling in both physiologic and pathologic conditions. Therefore, the function of IL-37 in tumoral angiogenesis is not clear and the underlying mechanism is not known. In this current study, we investigated the direct role of IL-37 on endothelial cells, as well as its indirect effect on angiogenesis through functioning on tumor cells both in vitro and in vivo. We found that IL-37 treatment directly promoted HUVEC migration and tubule formation, indicating IL-37 as a proangiogenic factor. Surprisingly, the supernatants from IL-37 overexpressing tumor cell line promoted HUVEC apoptosis and inhibited its migration and tubule formation. Furthermore, we demonstrated that IL-37 suppressed tumor angiogenesis in a murine orthotopic hepatocellular carcinoma model, suggesting its dominant antiangiogenesis role in vivo. Moreover, microarray and qPCR analysis demonstrated that IL-37 reduced the expressions of proangiogenic factors and increased the expressions of antiangiogenic factors by tumor cells. Matrix metalloproteinase (MMP)2 expression was significantly decreased by IL-37 in both cell lines and murine tumor models. MMP9 and vascular endothelial growth factor expressions were also reduced in murine tumors overexpressing IL-37, as well as in cell lines overexpressing IL-37 under hypoxic conditions. In conclusion, although IL-37 could exert direct proangiogenic effects on endothelial cells, it plays an antiangiogenic role via modulating proangiogenic and antiangiogenic factor expressions by tumor cells in the tumor microenvironment.

Learn more
Sign up now

Want to stay up to date? Sign up for our newsletter

No, thanks