Novel Technologies for the Precise Monitoring of Chemotaxis: Investigating Aberrant Chemotactic Behavior in Fibroblasts from Patients with Lung Disease

Authors: Schwartz C.

Genetic Engineering & Biotechnology, Volume 37, Issue 4, 2017


Chemotaxis is a mechanism that provides directional cellular movement in response to alterations in the chemical composition of the immediate environment. The mechanism, in its simplest form, governs a wide range of biological processes: from targeting the movement of neutrophils toward a site of infection to providing cancer cells with a means of entering circulation during metastasis. It is also well known that chemotactic cell migration is a significant factor in the coordination of many physiological processes, such as wound healing and embryonic development. Due to the far-reaching implications of chemotactic activity in clinical research, it will come as no surprise that the underlying mechanisms that govern the process have long been investigated. There are several well-established techniques, but recent technological advances enable scientists to now view chemotaxis in much finer detail.